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Abstract  

In this work we generalise some previously obtained results concerning the quantisation 
of classical finite models according to the symmetric (Fermi-like) scheme of quantisation. 
We consider models whose dynamics is defined through some non-singular Lie bracket 
and show that we can make the dynamics with any prescribed bracket relations, as defined 
by a certain type of non.singular symmetric brackets, coexist. The quantisation scheme 
established is: (a) defined up to an arbitrary factor and, (b) sensitive to the addition ot ~ 
total time derivatives to the corresponding Lagrangian. Both unconstrained and constrained 
models are considered. 

I .  Introduction 

During the past few years a certain number of  works have been devoted to 
extend the usual (Dirac's) quantisation scheme in order to treat both Bose-like 
and Fermi-like systems in a unified way (Droz-Vincent, 1966; Franke & K~nay, 
1970; K~lnay & Rugged, 1972). Specifically, in a recent work, K~lnay & Rugged 
(1972) have presented a classical model of coupled harmonic oscillators that, 
when quantised via the symmetric (Fermi-like, rule of quantisation, produced 
just the usual non-relativistic system of second-quantised fermions, This model 
showed the following peculiarities: (a) the quantisation rule was defined up to 
an arbitrary factor, (b) the symmetric bracket relations were sensitive to the 
addition of a total time derivative to the model's Lagrangian, and (c) it was 
possible to make some prescribed symmetric bracket relations with a given set 
o f  dynamical equations coexist. The purpose of this work is to show that these 
properties are not specific of  the mentioned model but, on the contrary, that 
they are present in the wider class of  models characterised by: (a) a non- 
singular skew-symmetric bracket which define the dynamics in the conven- 
tional way, and (b) a non-singular symmetric bracket which prescribes the 
anticommutator relations of  the quantised model. 

It is also the purpose of this work to introduce a slightly generalised version 
of the plus Dirac bracket and to show that it is the natural symmetric structure 
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associated with a class of  models for which there exists a priori constraints 
between the coordinates. 

2. Notations and Conventions 

In Section 3 we are going to consider classical finite models whose phase- 
space coordinates we denote by au,/~ = 1 . . . . .  ZN. Later on this space will be 
stretched by introducing canonically conjugated momenta which will be 
denoted by 7ru. 

The sum convention for any kind of indices, as well as the abbreviations 
a u = a/aau, auv = a2/aauae~ v and au = a/anu, will be used systematically 
throughout this work. 

Brackets. The symbol { , }+ denote the plus Poisson bracket (Droz- 
Vincent, 1966): 

{F, G}+ = auF auG + auG a~F, (2.1) 

which is defined in the stretched phase space spanned on by {a, rr}, whereas 
{ , }; r is used for the brackets 

{F, G}; r = P; uv auF auG, (2.2) 

a 

which are defined in the original phase space. Here IIF+uvll is a symmetric 
matrix and II l-'_uu ti a skew-symmetric one. 

On the other hand, { , }+* is the plus Dirac bracket defined by (Franke & 
K~Inay, 1970) 

{F, G}÷ ° = {F, G)+ - {F, Oa}+C+ab {Ob, G}+. (2.3) 

Finally, { , }+r* is the generalised Dirac bracket introduced in Section 4 and 
and [ , ]+ denotes the anticommutator. 

Constraints. In Section 4 a constraint will be called plus first-class constraint 
(respectively plus second-class constraint) when it is first class (respectively 
second class ) with respect to { , }+. When classified in the same way, but 
according to the bracket { , }+r, they are called P+-first-class or P+-second- 
class constraints. 

3. Lagrangian Formulation o f  Symmetric Quantisation 

We consider the symmetric quantisation problem for a classical system 
whose dynamical equations are of the form 

= = {a", n ) _  r. (3 .1 )  

Here the r _  uu define a skew-symmetric non-singular matrix which allows us 
to construct in the usual way the Lie bracket { , }_r. These dynamical 
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equations are in fact the Euler-Lagrange equations corresponding to the 
family of Lagrangians (Ruggeri, 1973)'? 

dG 
t . c  = [ o ( , ~ ) ~ o  _ H(~) + -d-f" 
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(3.2) 

There are such that lIP-ur n, the matrix inverse to HF_uvU, can be obtained as 

r - , r  = a~,L - a j u .  (3.3) 

G is an arbitrary 'gauge' function which is in fact irrelevant for both: (a) the 
dynamical equations and (b) the Bose-like (skew-symmetric) quantisation 
problem. 7his however is not true as regards the Fermi-like quantisation 
scheme. To see this, notice that when constructing the canonical formalism 
from Lo the following 2N primary constraints appear in the stretched phase 
space 

X, = na - ]'u - aug  ~ 0. (3.4) 

These constraints, which are the only ones in this case, are always minus 
second-class constraints irrespective of (7. Their plus character however 
strongly depends on G because 

( x . ,  X r ) +  = --  (a , , f , .  + a , ,A, )  - 2 a . , , c .  0 . 5 )  

Let us now consider any non-singular (sufficiently well behaved) symmetric 
matrix F÷ur(a). It is always possible to choose G in such a way that equation 
(3.5) becomes 

{×u, Xr}+ = -//+Fur +, (3.6) 

where II Fur+ 11 is the matrix inverse to 11 F+ ur II and ~+ is any non-zero complex 
constant. This means that we can always choose G so that the constraints (3.4) 
are simultaneously minus second class and plus second class. Any further 
addition of non-linear G's to the Lagrangian (3.2) wilt change the plus character 
of the constrains and, consequently will change also the symmetric bracket 
relations between the ~'s which we now consider. 

The Fermi-like quantisation scheme proceeds through the construction of 
the plus Dirac bracket (Franke & K~Inay, 1970) which is defined as 

i F .  2)+" = {F,  J}+ - (F .  0 , , * ) + C +  "b (0z,*,]}+. (3.7) 

Here (0 +} = {X} and then, by equation (3.6): 116+ ab IT = }+-1 tlF+uvll" I f F  anct 
J are functions ofc~ but not of rr, we have 

(F ,  J'}+" = ~+ - '  iF, X4~ )+r+"r(x~, a}+ (3 .8)  

or 

~+ {F, J}+" = F+ "v 3uF a r J  - iF, J}+ r. (3.9) 

f For this {a} must be considered as a configuration space. 
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It follows then that the quantisation rule 

~+{ , }+'-* [ , 1+ (3 .10)  

leads here to 

a'q+ = (3.1 l) 

where &u is the quantum counterpart ofa~' and O is an ordering prescription 
chosen when quantising. The presence of the arbitrary factor ~+ in the corre- 
spondence (3.10) has been noted previously (Kfilnay & Ru~eri, 1972). 

Thus the Fermi-like quantisation according to any prescribed non-singular 
symmetric bracket can be made to coexist with any set of dynamical equations 
of the type described by equations (3.1) and (3.3). This is a generalisation of 
the result of a previous work where a model of coupled oscillators was quantised 
according to a particular symmetric bracket (KNnay & Rugged, 1972). The 
method followed in that work was the one just described above. 

4. Constrained Models 

An interesting and natural extension of the results of the previous section is 
afforded by the case in which we have a certain number, say Nl, ofaprior i  
constraints ~m(a) 

~m ~ 0 m = 1 . . . . .  N 1. (4.1) 

Imposing the constraints as external conditions on the variational problem for 
the Lagrangian (3.2) we find the following dynamical equations (Ruggeri, 
1973) 

= I ' - tw(BvH + u i av¢i). (4.2) 

As is usual Ni additional variables, the u's, have appeared which are to be 
determined through the consistence equations ~t "~ 0. These equations 
generally also produce new constraints which we again denote by era, but 
nowm =N1 + I ,  . . . .  No. 

For the symmetric quantisation of the a priori constrained models it is 
convenient to consider the canonical formulation of equation (4.2). This 
formulation proceeds exactly as usual from equations (3.2) and (4.1). Now, 
however, the following stretched set of 2N + Nc constraints is obtained 

{¢m, Xu;m = 1 . . . . .  Ne ; t t=  1,2 . . . . .  2N}. (4.3) 

Here the Xu are given by equation (3.4). We must now search for the plus 
character of these constraints. This is not a priori evident because the 
constraints do not have a null plus Poisson bracket with the X constraints. 
To find an effective classification we substitute the $'s by the new set 

(~m ÷ --= ~m + ~+-I X~k r+ kv ¢)L,~m ~ ~m ~ 0 m = 1 . . . . .  N c. (4 .4)  
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(cf. Rugged, 1973). It follows from equations (3.6) and (4.4) that: 

(a) (Ore +, X.)+ ~ (era, Xu)+ + ~+-~ (Xx, x.)+r+ x" a~¢~ 

i .e.  

('I'm +' ×u }+ ~ O, 
and also 

~)  

(~+, ~+}+ ~ ~+-i (~ ,  xo}+r+o~ a~¢. +/j+-~(xx, ~. }+r+ ~u au~ 
+ ~+-2(xx. xo}+r+ xu au~r+o~ a~¢. 
=/j+-I F+ux au~,,, axe,,, 

o r  
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(4.s) 

c+"v(n~÷,n~)+ =~w", u, v, w= 1,2 . . . . .  2N+No. (4.11) 

We are now able to calculate the symmetric bracket relations which follow 
from the plus Dirac bracket constructed with the constraints (4.9) and the 

satisfies 

(~,,,,, ~,+}+ ~. ~+-~ (¢,,,, ¢,;}+ r. (4.6) 

This way the set {~m +} has been classified according to the P+-chSracter of 
the set (¢km }: i f~ is F+-first-class (respectively P+-second-class) then ~+ is 
plus first-class (respectively plus second-class). 

Let us suppose now that from {~} we can sort out an irreducible set of 
F+-second-class constraints. Call them Oa +, a = 1, 2 . . . . .  No, with No ~ N c .  
There there exists llCr~ b I1 such that 

C r f t ,  COb+, Oc+ }+ r = SaC. (4.7) 

Let us construct {Oa + } according to equation (4.4): 

O. a + = Oa ÷ + ~+-1XxF+Xv avOa +. (4.8) 

We then argue that the set 
a " ÷ 

flu + = 5ut~Xu + 5u-2 tcOa ,  u = I, 2 . . . .  , 2N ,  . . . .  Z N  + No, 

(4.9) 

is an irreducible set of plus second-class constraints. In fact the (2N + No) x 
(2N + No) matrix 



250 G.J.  RUGGERI 

matrix (4.10). This bracket is defined as 

{F, G}+*  = (F, G}+ - {F, ~u+}+c+UU{rt +, G)+. (4.12) 

For two functions F and G which depend only on a we have, according to 
equations (4.8) and (4.9), 

{F, G}+ = O, 

(F, ~u+}+ = ~u g a~F + }+-1 ~,~_ 2N{F, 0a+}+ r,  etc. 

Substituting these into equation (4.I 2)we obtain 

}+{F, G}+* = F+UVO~FavG- (F, Oa+}+rCr÷ab{Ob +, G}+ r (4.14a) 

or, in a condensed form, 

}+(F, G}+* = (F, G}+ r*, (4.14b) 

where the bracket { , }+r* has been constructed from ( , }+r in the same 
way as { , }+* was constructed from ( , }+ (see equation (2.3)). 

We now reach the following conclusion: For any given constrained model 
whose dynamics is governed by equations (4.2) with a non-singular skew- 
symmetric matrix ]]F_u~]], a symmetric quantisation scheme can be set up. 
The procedure, which is completely analogous to the one followed in the 
skew-symmetric case (Ruggeri, 1973), leads us to a generalised version of the 
symmetric Dirac bracket.t 

(4.13a) 

(4.13b) 

5. Summary 

It has been shown in this work that, for at least a certain subset of classical 
dynamical models, a quantisation scheme of the symmetric type can be set up 
irrespective of the specific form of the dynamical equations. This means, in 
principle, we can quantise as a Fermiqike system any classical dynamical model 
of the above-defined subset. This in turn implies a certain degree of compati- 
bility between different algebraic structures, which may be relevant when 
trying to construct classical analogues for generalised quantum systems. We 
refer, for instance, to Green parasystems for which, besides the skew-symmetric 
(Lie) structure, a symmetric one is needed (see, in this context, Kfilnay, 1972). 
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t It is worthwhile to point out here that the bracket { , } +r* can be defined by the 
same procedure followed by Bergmann & Goldberg (1955) and Mukunda & Sudarshan 
(1968) to define the skew-symmetric Dirac bracket, and by Franke & K~ilnay (1970) to 
define the symmetric Dirac bracket. Moreover, the whole quantisation scheme constructed 
in the latter reference can be formulated entirely with the bracket { , }+£'. 
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